trans-Bis(dimethylphenylphosphine)bis-(3-Z-methoxy-1-propenyl)platinum(II)

By K. H.P.O'Flynn and W.S. McDonald
Department of Inorganic and Structural Chemistry, The University, Leeds LS2 9JT, England

(Received 26 January 1976; accepted 9 February 1976)

Abstract. $\left[\mathrm{Pt}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\left(\mathrm{CH}: \mathrm{CHCH}_{2} \mathrm{OMe}\right)_{2}\right]$, $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Pt}$, monoclinic, $P 2_{1} / a, a=23 \cdot 26$ (2), $b=$ 6.16 (1), $c=9.28$ (1) $\AA, \beta=107.5$ (2) ${ }^{\circ}, Z=2, D_{x}=1.61$ $\mathrm{g} \mathrm{cm}^{-3}, V=1268 \AA^{3}$. The compound, which was obtained by hydrazine reduction of the corresponding acetylide, is shown to have the Z stereochemistry, with crystallographic symmetry $\overline{1}$.

Introduction. Measurements were made on a Nonius CAD-4 diffractometer using monochromatized $\mathrm{Cu} K \alpha$ radiation. Intensities were measured in the $\theta-2 \theta$ scan mode using a scintillation counter and pulse-height discrimination, and the 1652 independent reflexions which were significantly above background were used in the structure determination. The structure was
solved by the heavy-atom method and refined by fullmatrix least squares. Minimizing $\sum w\left(F_{o}-\left|F_{c}\right|\right)^{2}$, with $w=1 /\left(1+0.002 F_{o}^{2}\right)$, adjustment of coordinates, anisotropic temperature factors for Pt and P , and isotropic temperature factors for C and O , reduced R to 6.89%. Atomic scattering factors, including Δf^{\prime} and $4 f^{\prime \prime}$ were taken from International Tables for X-ray Crystallography (1974). The atomic coordinates and vibration parameters with their e.s.d.'s are given in Table 1.*

[^0]Table 1. Fractional coordinates and vibration parameters $\left(\AA^{2} \times 10^{3}\right)$ and their e.s.d.'s The temperature factors are in the form $\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+U_{22} k^{2} b^{* 2}+U_{33} l^{2} c^{* 2}+2 U_{23} k l b^{*} c^{*}+2 U_{31} l h c^{*} a^{*}+2 U_{12} h k a^{*} b^{*}\right)\right]$

	x	y	z	U_{11}	U_{22}	U_{33}	U_{23}	U_{31}	U_{12}
Pt	0	0	0	21.2 (4)	$46 \cdot 0$ (4)	$31 \cdot 6$ (4)	$-1 \cdot 1(6)$	$5 \cdot 7$ (3)	-2.0 (5)
P	0.0840 (2)	-0.1727 (7)	$0 \cdot 1470$ (4)	28 (2)	47 (2)	39 (2)	1 (2)	5 (2)	1 (2)

Table 1 (cont.)

	x	y	z	$U_{\text {iso }}$
C(1)	$0 \cdot 0122$ (7)	-0.152 (3)	-0.189 (2)	52 (4)
C(2)	$0 \cdot 0398$ (8)	-0.085 (3)	-0.291 (2)	52 (4)
C(3)	$0 \cdot 0668$ (8)	$0 \cdot 134$ (3)	-0.289 (2)	57 (4)
O (4)	$0 \cdot 1261$ (6)	$0 \cdot 104$ (2)	-0.303 (2)	65 (3)
C(5)	$0 \cdot 1541$ (9)	0.315 (4)	-0.300 (3)	78 (6)
C(6)	0.0826 (8)	-0.275 (3)	0.332 (2)	63 (5)
C(7)	$0 \cdot 1075$ (9)	-0.416 (3)	$0 \cdot 066$ (2)	61 (4)
C(8)	$0 \cdot 1505$ (6)	-0.005 (3)	$0 \cdot 191$ (2)	41 (3)
C(9)	$0 \cdot 1779$ (8)	0.036 (3)	$0 \cdot 080$ (2)	52 (4)
C(10)	0.2296 (9)	$0 \cdot 169$ (4)	$0 \cdot 109$ (2)	68 (5)
C(11)	$0 \cdot 2525$ (9)	$0 \cdot 267$ (3)	$0 \cdot 251$ (2)	68 (5)
C(12)	$0 \cdot 2251$ (9)	$0 \cdot 230$ (3)	0.361 (2)	68 (5)
C(13)	$0 \cdot 1729$ (8)	0.095 (3)	0.331 (2)	56 (4)

Fig. 1. Atom numbering.

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with their e.s.d.'s

$\mathrm{Pt}-\mathrm{P}$	$2.282(4)$	$\mathrm{P}-\mathrm{Pt}-\mathrm{C}(1)$	$89.2(4)$
$\mathrm{Pt}-\mathrm{C}(1)$	$2.08(2)$	$\mathrm{Pt}-\mathrm{C}(1)-\mathrm{C}(2)$	$132(1)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.35(3)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$124(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.49(3)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(4)$	$107(1)$
$\mathrm{C}(3)-\mathrm{O}(4)$	$1.43(2)$	$\mathrm{C}(3)-\mathrm{O}(4)-\mathrm{C}(5)$	$109(1)$
$\mathrm{O}(4)-\mathrm{C}(5)$	$1.45(3)$	$\mathrm{Pt}-\mathrm{P}-\mathrm{C}(6)$	$117.8(6)$
$\mathrm{P}-\mathrm{C}(6)$	$1.84(2)$	$\mathrm{Pt}-\mathrm{P}-\mathrm{C}(7)$	$116.3(6)$
$\mathrm{P}--\mathrm{C}(7)$	$1.83(2)$	$\mathrm{Pt}-\mathrm{P}-\mathrm{C}(8)$	$113.0(5)$
$\mathrm{P}-\square \mathrm{C}(8)$	$1.80(2)$		
	$\mathrm{C}-\mathrm{C}$ (benzene ring) $1.38-1.43(3)$		

Discussion. The molecular structure and atom numbering are shown in Fig. 1 and bond lengths and angles are given in Table 2. The compound is obtained by the hydrazine reduction of trans-
$\left[\mathrm{Pt}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\left(\mathrm{C} \vdots \mathrm{CCH}_{2} \mathrm{OMe}\right)_{2}\right]$ (Empsall, Shaw \& Stringer, 1975) and this analysis establishes that cis addition occurs, giving the Z stereochemistry shown. The chain of atoms from $\mathrm{C}(3)$ through Pt to $\mathrm{C}\left(3^{\prime}\right)$ is planar, with individual atom displacements of less than one standard deviation. The atoms $\mathrm{Pt}, \mathrm{P}, \mathrm{P}^{\prime}$, $\mathrm{C}(1), \mathrm{C}\left(1^{\prime}\right)$ are necessarily coplanar because of the molecular $\overline{1}$ symmetry, and the dihedral angle between these two planes is $83 \cdot 1^{\circ}$. The differing sizes of Pt and methylene are reflected in the two angles at the olefin
group; the $\mathrm{Pt}-\mathrm{C}(1)-\mathrm{C}(2)$ angle of 132 (1) ${ }^{\circ}$ gives a $\mathrm{Pt} \cdots \mathrm{C}(2)$ contact of $3 \cdot 15 \AA$, while the $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ angle of $124(2)^{\circ}$ gives a $C(1) \cdots C(3)$ distance of $2 \cdot 50 \AA$. These angles may also be influenced by the interaction between Pt and $\mathrm{C}(3)$, which are separated by $3.58 \AA$, with a calculated $\mathrm{Pt} \cdots \mathrm{H}-\mathrm{C}(3)$ contact of $2 \cdot 99 \AA$.

We are grateful to Dr B. Sheldrick of the Biophysics Department, University of Leeds, for use of
the diffractometer and to the Science Research Council for a studentship (to K.H.P.O'F.).

References

Empsall, H. D., Shaw, B. L. \& Stringer, A. J. (1975). J. Organomet. Chem. 96, 461.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Acta Cryst. (1976). B32, 1597

1-Oxo-2-oxa-3,3-dimethylpent-4-ene-1,4-diylbis(triphenylphosphine)platinum(II)

By M. C. Norton and W.S. McDonald
Department of Inorganic and Structural Chemistry, The University, Leeds LS2 9JT, England

(Received 26 January 1976; accepted 9 February 1976)

Abstract. $\left[\mathrm{Pt}\left(\mathrm{CO} . \mathrm{OCMe}_{2} \mathrm{C}: \mathrm{CH}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$, $\mathrm{C}_{42} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Pt}$, monoclinic, $P 2_{1} / c, a=12 \cdot 298$ (2), $b=$ 11.038 (3), $c=27.207$ (3) $\AA, \beta=102.66(1)^{\circ}, D_{m}=1 \cdot 53$, $D_{x}=1.533 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4, V=3603 \AA^{3}$. The compound, obtained by carbonylation of a hydroxyacetylene complex, is shown to have a 'platinalactone' structure with a five-membered chelate ring and exocyclic oxo and methylene groups adjacent to the metal.

Introduction. Measurements were made on a Nonius CAD-4 diffractometer using monochromatized $\mathrm{Cu} K \alpha_{1}$ radiation ($\lambda=1 \cdot 54051 \AA$). The cell dimensions and their e.s.d.'s were obtained by a least-squares fit of

Fig. 1. Atom numbering.
$\sin \theta$ values for 25 reflexions centred using the program SETANG. Intensities were recorded in the $\theta-2 \theta$ scan mode using a scintillation counter and pulseheight discrimination. A control reflexion, monitored every 50 reflexions, had fallen in intensity by 16% at the end of data collection, and the measured reflexions were scaled accordingly. The structure determination used the 3732 independent reflexions with $\theta<70^{\circ}$ and $I>3 \sigma(I)$, where $I=P-2\left(B_{1}+B_{2}\right)$ and $\sigma^{2}(I)=P+$ $4\left(B_{1}+B_{2}\right)+(0.06 I)^{2}$.

The structure was solved by the heavy-atom method and refined by full-matrix least squares using the X-RAY programs (Stewart, Kruger, Ammon, Dickinson \& Hall, 1972). Atomic coordinates, anisotropic temperature factors for Pt and P , and isotropic temperature factors for O and C were refined; the phenyl H atoms were included in calculated positions, assigned the temperature factors of the C atoms to which they are attached, but were not refined. Atomic scattering factors, including Δf^{\prime} and $\Delta f^{\prime \prime}$, were taken from International Tables for X-ray Crystallography (1974). Minimization of $w\left(F_{o}-\mid F_{c}\right)^{2}$, with weights derived from the expression for $\sigma^{2}(I)$ given above, gave a final R of $6 \cdot 21 \%$. The atomic coordinates and vibration parameters with their e.s.d.'s are given in Table 1.*

[^1]Table 1. Fractional coordinates ($\times 10^{4}$) and vibration parameters $\left(\AA^{2} \times 10^{3}\right)$ and their e.s.d.'s
The temperature factors are in the form $\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+U_{22} k^{2} b^{* 2}+U_{33} l^{2} c^{* 2}+2 U_{23} k l b^{*} c^{*}+2 U_{31} l h c^{*} a^{*}+2 U_{12} h k a^{*} b^{*}\right)\right]$ or $\exp \left[-2 \pi^{2} U_{\text {soc }}(2 \sin \theta / \lambda)^{2}\right]$.

	x	y	z	U_{11}	U_{22}	U_{33}	U_{23}	U_{31}	U_{12}
Pt	$1286 \cdot 4$ (5)	$3164 \cdot 6$ (5)	$3553 \cdot 1$ (2)	41.6 (2)	$36 \cdot 2$ (3)	$41 \cdot 6$ (3)	$8 \cdot 0$ (4)	$17 \cdot 3$ (2)	$10 \cdot 9$ (3)
$\mathrm{P}(1)$	2718 (3)	3742 (3)	3163 (1)	45 (2)	38 (2)	41 (2)	3 (2)	18 (2)	6 (2)
P(2)	2343 (3)	2504 (3)	4330 (1)	44 (2)	40 (2)	46 (2)	7 (2)	19 (2)	10 (2)

[^0]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31678 (11 pp., 1 microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

[^1]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31679 (25 pp., 1 microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

